Cornell Vegetable Program Enrollment

Program Areas

  • Food Safety
  • Variety Evaluation
  • Market Development
  • Pest Management
  • Cultural Practices

Enrollment Benefits

  • Telephone / Email Consultations
  • VegEdge Newsletter
  • Direct Mailings
  • Educational Meetings & Conferences
  • In-Field Educational Opportunities
  • On-Farm Research Trials

CVP Enrollment Form (PDF; 121KB)

Enrollee Login

Password:

Log In To Access:

  • Issues of VegEdge Newsletters
  • Helpful Diagnostic Tool:
      What's wrong with my crop?

Not an Enrollee? Enroll Now!

Online Enrollment Form

Reduce Storm Damage to Your Greenhouses

November 25, 2014

Reduce Storm Damage to Your Greenhouses
From John W. Bartok, Jr., Agricultural Engineer, Ashford, CT:

Nature seems to be getting more violent in recent years with frequent earthquakes, increased numbers of hurricanes and record breaking snowstorms. Insurance damage claims have increased considerably. The International Building Code has revised upward its wind and snow loading requirements for some areas of the U.S.

Each year there are reports of greenhouses that have been damaged by weather and natural events. Greenhouse design is different than conventional farm buildings in that the structural profile has to be small to allow maximum light to reach the plants. Most farm buildings are over designed to handle severe weather conditions.

Damage to greenhouses can include racking of the frame, bending of the hoops, broken glass or torn plastic and uplifted foundation posts. Preparation ahead of time can minimize the damage.

Wind loading
Wind forces that act on a greenhouse are influenced by numerous factors including the basics wind speed, building orientation, exposure, height and shape of doors or vents that may be open. The wind passing over a greenhouse creates a positive pressure on the windward side and a negative pressure on the leeward side. These can combine to create a force that wants to collapse or overturn the building. An 80 mph wind can produce a pressure of 16 pounds per square foot (psf). For example, the 10’ by 100’ sidewall of a gutter-connected greenhouse would have to resist a 16,000 pound force.

Wind can also create a force similar to an aircraft wing that wants to lift the greenhouse off the ground. An 80 mph wind blowing perpendicular to the side of a 28’ x 100’ hoophouse can create a lifting force of 220 pounds per foot of length or 22,000 pounds of uplift on the whole structure. When you consider the total weight of materials and equipment in the greenhouse is about 6000 pounds, the foundation must have a withdrawl resistance of about 300 pounds each. This is why building inspectors frequently require that the posts be surrounded by concrete.

Although you have no control over the force or direction of severe winds, here are a few tips to help minimize storm damage:
  • Check the area for loose objects. Anything that can be picked up and hurled through the glazing should be secured or moved indoors. Metal chimney (stove pipe) sections should be secured with sheet metal screws.
  • Inspect for dry or weak tree limbs that could fall on the greenhouse.
  • Close all openings including vents, louvers and doors. The effective force of the wind is doubled when it is allowed inside the building. The wind on the outside puts a pressure or lifting force on the structure. The wind inside tries to force the walls and roof off.
  • On air inflated greenhouses, increase the inflation pressure slightly by opening the blower’s intake valve. This will reduce the rippling effect. Check to see that the plastic is attached securely and that any holes are taped.
  • Disconnect the arm to the motor on all ventilation – intake shutters and tape the shutters closed. Then turn on enough exhaust fans to create a vacuum in the greenhouse. This will suck the plastic tight against the frame.
  • Windbreaks can reduce the wind speed and deflect it over the greenhouse. Conifer trees (hemlock, spruce, pine, etc.) in a double row located at least 50’ upwind from the greenhouse can reduce the damaging effects of the wind. Wood or plastic storm fencing can be used as a temporary measure.
Snow loading
Snow that accumulates on a greenhouse can put significant weight on the structural members. Snow loads vary considerably from 0 along the southern coastline to more than 100 pounds per square foot in Northern Maine. Local building codes specify the design snow load.

Snow can be light and fluffy with a water equivalent of 12” of snow equal to 1” of rain. It can also be wet and heavy with 3” equal to 1” of rain. Snow having a 1” rain water equivalent will load a greenhouse with 5.2 psf. This amounts to 6.5 tons on a 25’ x 96’ greenhouse.

The following are a few pointers to consider before the next snow season:
  • The foundation piers or posts should be large enough to support the weight of the building including crop and equipment loads. 
  • All greenhouses should have diagonal bracing to keep it from racking from the weight of the snow or force of the wind.
  • Collar ties and post connections should have adequate bolts or screws. This is a weak point in some greenhouse designs.
  • Allow 10’ to 12’ between individual greenhouse for snow accumulation and to prevent sidewalls from being crushed in.
  • When building new hoophouses, consider using a gothic design that sheds snow easier. In hoop shaped houses, install 2” x 4” posts under the ridge every 10’ when heavy snow is predicted.
  • The heating system should be large enough to maintain 60ºF to melt snow and ice. It takes 250 Btu/hr per square foot of glazing to melt a wet snow falling at a rate of 1”/hour. Heat should be turned on in the greenhouse or under the gutter several hours before the storm begins.
  • The plastic should be tight and inflated to at least 0.25” water pressure. This can be checked with a monometer. Any cracked or broken glass should be replaced.
  • Energy screens should be retracted to allow heat to the glazing.
  • A standby generator should be available with adequate fuel for the duration of the storm to power heaters, fans and blowers.
Selection of greenhouses that meet the International Building Code and good construction techniques are important considerations when building new greenhouses. A little preparation before a storm can minimize damage from severe weather events.

Reduce Storm Damage to Your Greenhouses (pdf; 98KB)

more crops
Asparagus

Asparagus

Beets

Beets

Broccoli

Broccoli

Brussels Sprouts

Brussels Sprouts

Cabbage

Cabbage

Carrots

Carrots

Cauliflower

Cauliflower

Cucumbers

Cucumbers

Dry Beans

Dry Beans

Eggplant

Eggplant

Ethnic Vegetables

Ethnic Vegetables

Garlic

Garlic

Horseradish

Horseradish

Kohlrabi

Kohlrabi

Leeks

Leeks

Lettuce / Leafy Greens

Lettuce / Leafy Greens

Melons

Melons

Onions

Onions

Parsnips

Parsnips

Peas

Peas

Peppers

Peppers

Potatoes

Potatoes

Pumpkins / Gourds

Pumpkins / Gourds

Radishes

Radishes

Rhubarb

Rhubarb

Rutabaga

Rutabaga

Snap Beans

Snap Beans

Squash - Summer

Squash - Summer

Squash- Winter

Squash- Winter

Sweet Corn

Sweet Corn

Sweet Potatoes

Sweet Potatoes

Tomatoes

Tomatoes

Turnips

Turnips

more crops

Upcoming Events

Urban and Small-Scale Growers Meeting

April 5, 2024 : Urban and Small-Scale Growers Meeting
Buffalo, NY

This event is an opportunity for small-scale growers, urban growers, community garden leaders and ag service providers to build community, engage in production-focused workshops, and share resources. Topics include building soil productivity, insect and disease management, growing vegetables, berries, and tree fruits, and more.

REGISTRATION IS CLOSED! We met the space limitation for this event.

View Urban and Small-Scale Growers Meeting Details

2024 DEC Special Permit Handler Training -- Wayne County

April 9, 2024
Newark, NY

Special Permits (SP) will relieve the certified pesticide applicator from "on-site within voice contact" supervision of non-certified pesticide applicators when they are handling federally-restricted-use pesticides for which they hold a Special Permit. The 8 specific labels covered: Endigo ZCX, Warrior II with Zeon Technology, Agri-Mek SC, Beseige, Leverage 360, Danitol 2.4EC, Mustang Maxx, and Lannate LV. 

View 2024 DEC Special Permit Handler Training -- Wayne County Details

2024 DEC Special Permit Handler Training -- Orleans County

April 10, 2024
Albion, NY

Special Permits (SP) will relieve the certified pesticide applicator from "on-site within voice contact" supervision of non-certified pesticide applicators when they are handling federally-restricted-use pesticides for which they hold a Special Permit. The 8 specific labels covered: Endigo ZCX, Warrior II with Zeon Technology, Agri-Mek SC, Beseige, Leverage 360, Danitol 2.4EC, Mustang Maxx, and Lannate LV. 

View 2024 DEC Special Permit Handler Training -- Orleans County Details

Announcements

JOB POSTING: Onion Crop Scout

Be a Vital Part of New York Onion Production!

We are looking for someone who appreciates agriculture to scout commercial onion fields in Oswego Co. and/or Wayne Co. for 13 weeks during the summer, maximum 19 hours/week, who would return to the seasonal position annually.

As an Onion Crop Scout for the Cornell Vegetable Program (CVP), you will independently scout 11 commercial onion fields collecting data on insect pests, diseases, weeds and crop stage/quality. Scouting data will be summarized into a preliminary report which is finalized by Cornell's Onion Specialist. Growers use the scouting reports to inform their spray decisions, which enables an integrated approach to pest management. Your hard work will ensure grower engagement, implementation of research-based recommendations, and early detection of emerging issues. It is the "beating heart" of CVP's onion program.

Pay: $18.50/hr. No benefits. Personal mileage will be reimbursed at the federal rate.

Key Qualifications & Skills:
  • High School diploma and 6 months experience in an agriculture setting, or the equivalent combination of education and experience.
  • Must be able to meet the travel requirements of the position and have reliable transportation as well as have and maintain a valid and unrestricted New York State driver's license.
  • Visual concentration and attention to detail are required to detect pests and pest damage.
  • Able to work independently in collecting and summarizing data.
  • Must be able to work outdoors in all types of weather.
  • Proven experience in communicating effectively, both written and oral.
  • Preferred: Experience working with plants, plant disease and other pest identification.
Training will include being accompanied by a veteran onion scout for the first season with the intention of scouting independently in the second year, and ideally for several more years after.

Flexible on start and end dates, day(s) of week you work, and whether Oswego or Wayne or both counties are scouted. Our priority is finding someone who will return to the position annually.

Read details about the Onion Crop Scout position.

To apply (resume and cover letter): http://tiny.cc/Onion_Scout_WDR_00043345

Management Practices for High Organic Matter Soils

We are exploring management practices for vegetable farmers with high organic matter soils. These soils are usually found in urban growing areas as urban farmers typically grow in imported soil mixtures that have been constructed over time and in high tunnels where leaching events are limited. In both cases, we see that soil pH and calcium levels can increase due to alkaline irrigation water and with grower inputs such as high levels of compost and/or fertilizer. We commonly see limited plant nutrient uptake due to high soil pH. We have produced four "Management Practices for Urban Soil Health" case studies sharing project updates in our urban cover crop, pH adjustment, and bulk density adjustment work. In each case study, we are looking at the effect of the management practice on soil and crop health. 

Management Practices for Urban Soil Health: Cover Cropping
Management Practices for Urban Soil Health: pH Adjustment
Management Practices for Urban Soil Health: pH Adjustment in NYC
Management Practices for Urban Soil Health: Correcting Nutrient Test Results for Soils with High Organic Matter

2023 Year in Review and 2024 Preview

As the Cornell Vegetable Program reflects on 2023, we want to thank you for your partnership and continued support of our team and the work we do to address issues impacting the commercial vegetable industry in the western and central portion of NYS. Our 2023 Year in Review and 2024 Preview report highlights of some of the many research and outreach programs led by our team members over the last year plus a look ahead to some of our plans for 2024.
  • Use of Ground Barriers as a New Strategy for Swede Midge in Brassicas for Small Organic and Urban Farms
  • Cornell Vegetable Program Responds to Late Blight in 2023
  • Working Groups Help to Improve the Western NY Food System
  • Field Trials Completed to Test Lasers as a Bird Deterrent in Sweet Corn
  • Increased Monitoring of Western Bean Cutworm in Dry Beans
  • Sweet Potato Varieties Suitable for Western NY Production?


NEWSLETTER  |   CURRENT PROJECTS  |   IMPACT IN NY  |   SPONSORSHIP  |   RESOURCES  |   SITE MAP