Cornell Vegetable Program Enrollment

Program Areas

  • Food Safety
  • Variety Evaluation
  • Market Development
  • Pest Management
  • Cultural Practices

Enrollment Benefits

  • Telephone / Email Consultations
  • VegEdge Newsletter
  • Direct Mailings
  • Educational Meetings & Conferences
  • In-Field Educational Opportunities
  • On-Farm Research Trials

CVP Enrollment Form (PDF; 145KB)

Enrollee Login

Password:

Log In To Access:

  • Issues of VegEdge Newsletters

Not an Enrollee? Enroll Now!

Online Enrollment Form

Reduce Storm Damage to Your Greenhouses

November 25, 2014

Reduce Storm Damage to Your Greenhouses
From John W. Bartok, Jr., Agricultural Engineer, Ashford, CT:

Nature seems to be getting more violent in recent years with frequent earthquakes, increased numbers of hurricanes and record breaking snowstorms. Insurance damage claims have increased considerably. The International Building Code has revised upward its wind and snow loading requirements for some areas of the U.S.

Each year there are reports of greenhouses that have been damaged by weather and natural events. Greenhouse design is different than conventional farm buildings in that the structural profile has to be small to allow maximum light to reach the plants. Most farm buildings are over designed to handle severe weather conditions.

Damage to greenhouses can include racking of the frame, bending of the hoops, broken glass or torn plastic and uplifted foundation posts. Preparation ahead of time can minimize the damage.

Wind loading
Wind forces that act on a greenhouse are influenced by numerous factors including the basics wind speed, building orientation, exposure, height and shape of doors or vents that may be open. The wind passing over a greenhouse creates a positive pressure on the windward side and a negative pressure on the leeward side. These can combine to create a force that wants to collapse or overturn the building. An 80 mph wind can produce a pressure of 16 pounds per square foot (psf). For example, the 10’ by 100’ sidewall of a gutter-connected greenhouse would have to resist a 16,000 pound force.

Wind can also create a force similar to an aircraft wing that wants to lift the greenhouse off the ground. An 80 mph wind blowing perpendicular to the side of a 28’ x 100’ hoophouse can create a lifting force of 220 pounds per foot of length or 22,000 pounds of uplift on the whole structure. When you consider the total weight of materials and equipment in the greenhouse is about 6000 pounds, the foundation must have a withdrawl resistance of about 300 pounds each. This is why building inspectors frequently require that the posts be surrounded by concrete.

Although you have no control over the force or direction of severe winds, here are a few tips to help minimize storm damage:
  • Check the area for loose objects. Anything that can be picked up and hurled through the glazing should be secured or moved indoors. Metal chimney (stove pipe) sections should be secured with sheet metal screws.
  • Inspect for dry or weak tree limbs that could fall on the greenhouse.
  • Close all openings including vents, louvers and doors. The effective force of the wind is doubled when it is allowed inside the building. The wind on the outside puts a pressure or lifting force on the structure. The wind inside tries to force the walls and roof off.
  • On air inflated greenhouses, increase the inflation pressure slightly by opening the blower’s intake valve. This will reduce the rippling effect. Check to see that the plastic is attached securely and that any holes are taped.
  • Disconnect the arm to the motor on all ventilation – intake shutters and tape the shutters closed. Then turn on enough exhaust fans to create a vacuum in the greenhouse. This will suck the plastic tight against the frame.
  • Windbreaks can reduce the wind speed and deflect it over the greenhouse. Conifer trees (hemlock, spruce, pine, etc.) in a double row located at least 50’ upwind from the greenhouse can reduce the damaging effects of the wind. Wood or plastic storm fencing can be used as a temporary measure.
Snow loading
Snow that accumulates on a greenhouse can put significant weight on the structural members. Snow loads vary considerably from 0 along the southern coastline to more than 100 pounds per square foot in Northern Maine. Local building codes specify the design snow load.

Snow can be light and fluffy with a water equivalent of 12” of snow equal to 1” of rain. It can also be wet and heavy with 3” equal to 1” of rain. Snow having a 1” rain water equivalent will load a greenhouse with 5.2 psf. This amounts to 6.5 tons on a 25’ x 96’ greenhouse.

The following are a few pointers to consider before the next snow season:
  • The foundation piers or posts should be large enough to support the weight of the building including crop and equipment loads. 
  • All greenhouses should have diagonal bracing to keep it from racking from the weight of the snow or force of the wind.
  • Collar ties and post connections should have adequate bolts or screws. This is a weak point in some greenhouse designs.
  • Allow 10’ to 12’ between individual greenhouse for snow accumulation and to prevent sidewalls from being crushed in.
  • When building new hoophouses, consider using a gothic design that sheds snow easier. In hoop shaped houses, install 2” x 4” posts under the ridge every 10’ when heavy snow is predicted.
  • The heating system should be large enough to maintain 60ºF to melt snow and ice. It takes 250 Btu/hr per square foot of glazing to melt a wet snow falling at a rate of 1”/hour. Heat should be turned on in the greenhouse or under the gutter several hours before the storm begins.
  • The plastic should be tight and inflated to at least 0.25” water pressure. This can be checked with a monometer. Any cracked or broken glass should be replaced.
  • Energy screens should be retracted to allow heat to the glazing.
  • A standby generator should be available with adequate fuel for the duration of the storm to power heaters, fans and blowers.
Selection of greenhouses that meet the International Building Code and good construction techniques are important considerations when building new greenhouses. A little preparation before a storm can minimize damage from severe weather events.

Reduce Storm Damage to Your Greenhouses (pdf; 98KB)

more crops
Asparagus

Asparagus

Beets

Beets

Broccoli

Broccoli

Brussels Sprouts

Brussels Sprouts

Cabbage

Cabbage

Carrots

Carrots

Cauliflower

Cauliflower

Cucumbers

Cucumbers

Dry Beans

Dry Beans

Eggplant

Eggplant

Ethnic Vegetables

Ethnic Vegetables

Garlic

Garlic

Horseradish

Horseradish

Kohlrabi

Kohlrabi

Leeks

Leeks

Lettuce / Leafy Greens

Lettuce / Leafy Greens

Melons

Melons

Mushrooms

Mushrooms

Onions

Onions

Parsnips

Parsnips

Peas

Peas

Peppers

Peppers

Potatoes

Potatoes

Pumpkins / Gourds

Pumpkins / Gourds

Radishes

Radishes

Rhubarb

Rhubarb

Rutabaga

Rutabaga

Snap Beans

Snap Beans

Squash - Summer

Squash - Summer

Squash- Winter

Squash- Winter

Sweet Corn

Sweet Corn

Sweet Potatoes

Sweet Potatoes

Tomatoes

Tomatoes

Turnips

Turnips

more crops

Upcoming Events

Food Safety Lunch and Learn Webinar Series

February 11, 2025 : Part One: What's Going on with Food Safety?

NYS Department of Agriculture and Markets FSMA inspectors are expected to step up farm visits this season. Why are they showing up on the farm asking about FSMA? Aren't we exempt? This noontime hour we will discuss the purpose of the farm visits and what produce farmers need to know.


February 18, 2025 : Part Two: What Counts as Food Processing?

In this session, we will discuss what counts as processing and what doesn't. Stories of inspectors coming to farmers markets and auctions telling some growers certain products can't be sold usually without much explanation. We will try to make some sense of things and clear up some misunderstandings so hopefully the upcoming season goes smoothly.


February 25, 2025 : Part Three: Traceability - Benefits for Food Safety and Beyond

Can having a traceback process for your produce (and other farm products) make good business sense regardless of FSMA regulations? We will (try to) make the case for farms to have some sort of traceability mechanism in place.

View Food Safety Lunch and Learn Webinar Series Details

Allium Pests!

February 26, 2025

Presented by Christy Hoepting (CCE Cornell Vegetable Program) and Ann Hazelrigg (Univ. of VT), this webinar will focus on organic management of pests and diseases of onions, garlic, leeks. The webinar is part of a series supported by the Transition to Organic Partnership Program. 

View Allium Pests! Details

Good Agricultural Practices (GAPs) Training

March 4 - March 5, 2025
Syracuse, NY

This two-day workshop will train fruit and vegetable growers and others interested in produce safety, the Food Safety Modernization Act (FSMA), the Produce Safety Rule, Good Agricultural Practices (GAPSs), and co-management of natural resources and food safety. (A remote attendance option is available.)

View Good Agricultural Practices (GAPs) Training Details

Announcements

We're Hiring: Vegetable Field Research Technician

Vegetable Field Research Technician (Batavia, NY)
If you enjoy working outdoors and want to gain hands-on experience in research conducted on a diverse set of working vegetable farms, this position is for you! The position (39 hours/week) with CCE Cornell Vegetable Program is available from May through August with possible extension depending on candidate availability. This position will be housed at the Cornell Cooperative Extension office in Batavia, NY. Regular travel throughout our program region will be required. 

To Apply:
External applicants must apply through the Cornell Careers site. Internal applicants (including temporary employees) will need to apply through Workday.

The initial posting will close on February 23, 2025 but may be extended based on the initial candidate pool.

Winter Cover Cropping in High Tunnels

Cornell Cooperative Extension is researching cover crops for high tunnel growers to better manage fertility and improve soil health. Our work has shown that winter cover cropping in high tunnels has the potential to add organic matter, improve soil structure, support microbial activity, and help with nutrient management by scavenging leftover nitrogen and/or fixing nitrogen. This publication, Management Practices for High Organic Matter Soils: Winter Cover Cropping in High Tunnels, shares best practices for winter cover cropping in high tunnels including species selection, planting rates and dates, termination, and cultural management considerations.

Laser Scarecrows to Deter Birds in Sweet Corn

Are you considering the use of a laser scarecrow to deter birds on your farm? Cornell Cooperative Extension and the University of Rhode Island teamed up to test a research laser scarecrow on sweet corn farms.

A laser scarecrow is a device that has one or more laser modules connected to motors. The specifications of the lasers are optimized to the color and motion sensitivity of bird's eyes. When laser beams move across a field, birds become frightened and attempt to move away from the perceived threat. Light from the laser covers an area quickly and moves through the canopy without causing injury to the crop. Research demonstrates that birds do not readily become habituated to the laser.

A laser scarecrow used as the sole deterrent typically results in a significant reduction in crop damage. Combined with an auditory device, damage can be reduced even more. When used as part of an integrated management program for bird control that utilizes habitat management and multiple scare tactics, laser scarecrows can be useful tools for growers of multiple crops. All scare tactics must be deployed before birds find the field. The effectiveness of lasers depends on multiple factors such as bird species, bird populations, habitat and food availability. Lasers are not effective at deterring deer, racoons, coyotes or other mammals.

To learn more, the Laser Scarecrows to Deter Birds in Sweet Corn and Other High-Value Agricultural Crops fact sheet provides background information, research data, FAQs, and Advantages/Limitations on laser scarecrows.

NY Urban Farms Pest Management Fact Sheet Series

Cornell Cooperative Extension has partnered with dozens of urban farms across New York State to demonstrate and evaluate sustainable pest management strategies. Together with farmers, we found success using control methods that prevent or reduce crop losses through exclusion strategies, crop timing, host resistance, the introduction of beneficial organisms, and more. Regardless of management strategy used, common requirements for success include a knowledge of the pest and disease complex, preventative deployment and commitment to the process. The New York Urban Farms Sustainable Pest Management Fact Sheet Series includes case studies highlighting pest management techniques that New York urban farms have found valuable.

NYS Urban Growers Pest Management Needs Assessment

As part of a multi-year project exploring non-spray pest management options that are economically and environmentally sustainable for urban farms, we conducted a needs assessment with urban growers across New York State. The New York State Urban Growers Pest Management Needs Assessment presents findings on current pest management practices, challenges, and topics of future interest.

NEWSLETTER  |   CURRENT PROJECTS  |   IMPACT IN NY  |   SPONSORSHIP  |   RESOURCES  |   SITE MAP